7. References¶
- 1
M. Scudellari. Protein-slaying drugs could be the next blockbuster therapies. Nature, 567(7748):298–300, 2019. URL: https://www.ncbi.nlm.nih.gov/pubmed/30894734, doi:10.1038/d41586-019-00879-3.
- 2
E. Valeur, S. M. Gueret, H. Adihou, R. Gopalakrishnan, M. Lemurell, H. Waldmann, T. N. Grossmann, and A. T. Plowright. New modalities for challenging targets in drug discovery. Angew Chem Int Ed Engl, 56(35):10294–10323, 2017. URL: https://www.ncbi.nlm.nih.gov/pubmed/28186380, doi:10.1002/anie.201611914.
- 3
G. Caron, J. Kihlberg, G. Goetz, E. Ratkova, V. Poongavanam, and G. Ermondi. Steering new drug discovery campaigns: permeability, solubility, and physicochemical properties in the bro5 chemical space. ACS Med Chem Lett, 12(1):13–23, 2021. URL: https://www.ncbi.nlm.nih.gov/pubmed/33488959, doi:10.1021/acsmedchemlett.0c00581.
- 4
S. D. Appavoo, S. Huh, D. B. Diaz, and A. K. Yudin. Conformational control of macrocycles by remote structural modification. Chem Rev, 119(17):9724–9752, 2019. URL: https://www.ncbi.nlm.nih.gov/pubmed/31411458, doi:10.1021/acs.chemrev.8b00742.
- 5
A. A. Vinogradov, Y. Yin, and H. Suga. Macrocyclic peptides as drug candidates: recent progress and remaining challenges. J Am Chem Soc, 141(10):4167–4181, 2019. URL: https://www.ncbi.nlm.nih.gov/pubmed/30768253, doi:10.1021/jacs.8b13178.
- 6
A. Zorzi, K. Deyle, and C. Heinis. Cyclic peptide therapeutics: past, present and future. Curr Opin Chem Biol, 38:24–29, 2017. URL: https://www.ncbi.nlm.nih.gov/pubmed/28249193, doi:10.1016/j.cbpa.2017.02.006.
- 7
C. Morrison. Constrained peptides' time to shine? Nat Rev Drug Discov, 17(8):531–533, 2018. URL: https://www.ncbi.nlm.nih.gov/pubmed/30057410, doi:10.1038/nrd.2018.125.
- 8
J. E. Bock, J. Gavenonis, and J. A. Kritzer. Getting in shape: controlling peptide bioactivity and bioavailability using conformational constraints. ACS Chem Biol, 8(3):488–499, 2013. URL: https://www.ncbi.nlm.nih.gov/pubmed/23170954, doi:10.1021/cb300515u.
- 9
P. C. D. Hawkins and S. Wlodek. Decisions with confidence: application to the conformation sampling of molecules in the solid state. J Chem Inf Model, 60(7):3518–3533, 2020. URL: https://www.ncbi.nlm.nih.gov/pubmed/32573224, doi:10.1021/acs.jcim.0c00358.
- 10
D. Sindhikara, S. A. Spronk, T. Day, K. Borrelli, D. L. Cheney, and S. L. Posy. Improving accuracy, diversity, and speed with prime macrocycle conformational sampling. J Chem Inf Model, 57(8):1881–1894, 2017. URL: https://www.ncbi.nlm.nih.gov/pubmed/28727915, doi:10.1021/acs.jcim.7b00052.
- 11
S. Wang, J. Witek, G. A. Landrum, and S. Riniker. Improving conformer generation for small rings and macrocycles based on distance geometry and experimental torsional-angle preferences. J Chem Inf Model, 60(4):2044–2058, 2020. URL: https://www.ncbi.nlm.nih.gov/pubmed/32155061, doi:10.1021/acs.jcim.0c00025.
- 12
V. Poongavanam, Y. Atilaw, S. Ye, L. H. E. Wieske, M. Erdelyi, G. Ermondi, G. Caron, and J. Kihlberg. Predicting the permeability of macrocycles from conformational sampling - limitations of molecular flexibility. J Pharm Sci, 110(1):301–313, 2021. URL: https://www.ncbi.nlm.nih.gov/pubmed/33129836, doi:10.1016/j.xphs.2020.10.052.
- 13
P. Thepchatri, T. Eliseo, D. O. Cicero, D. Myles, and J. P. Snyder. Relationship among ligand conformations in solution, in the solid state, and at the hsp90 binding site: geldanamycin and radicicol. J Am Chem Soc, 129(11):3127–34, 2007. URL: https://www.ncbi.nlm.nih.gov/pubmed/17323946, doi:10.1021/ja064863p.
- 14
J. Witek, B. G. Keller, M. Blatter, A. Meissner, T. Wagner, and S. Riniker. Kinetic models of cyclosporin a in polar and apolar environments reveal multiple congruent conformational states. J Chem Inf Model, 56(8):1547–62, 2016. URL: https://www.ncbi.nlm.nih.gov/pubmed/27387150, doi:10.1021/acs.jcim.6b00251.
- 15
J. Witek, M. Muhlbauer, B. G. Keller, M. Blatter, A. Meissner, T. Wagner, and S. Riniker. Interconversion rates between conformational states as rationale for the membrane permeability of cyclosporines. Chemphyschem, 18(23):3309–3314, 2017. URL: https://www.ncbi.nlm.nih.gov/pubmed/28921848, doi:10.1002/cphc.201700995.
- 16
Fabio Begnini, Vasanthanathan Poongavanam, Yoseph Atilaw, Mate Erdelyi, Stefan Schiesser, and Jan Kihlberg. Cell permeability of isomeric macrocycles: predictions and nmr studies. ACS Medicinal Chemistry Letters, 2021. URL: https://pubs.acs.org/doi/pdf/10.1021/acsmedchemlett.1c00126, doi:10.1021/acsmedchemlett.1c00126.
- 17
P. Bonnet, D. K. Agrafiotis, F. Zhu, and E. Martin. Conformational analysis of macrocycles: finding what common search methods miss. J Chem Inf Model, 49(10):2242–59, 2009. URL: https://www.ncbi.nlm.nih.gov/pubmed/19807090, doi:10.1021/ci900238a.
- 18
K. S. Watts, P. Dalal, A. J. Tebben, D. L. Cheney, and J. C. Shelley. Macrocycle conformational sampling with macromodel. J Chem Inf Model, 54(10):2680–96, 2014. URL: https://www.ncbi.nlm.nih.gov/pubmed/25233464, doi:10.1021/ci5001696.
- 19
E. A. Coutsias, K. W. Lexa, M. J. Wester, S. N. Pollock, and M. P. Jacobson. Exhaustive conformational sampling of complex fused ring macrocycles using inverse kinematics. J Chem Theory Comput, 12(9):4674–87, 2016. URL: https://www.ncbi.nlm.nih.gov/pubmed/27447193, doi:10.1021/acs.jctc.6b00250.
- 20
J. Damjanovic, J. Miao, H. Huang, and Y. S. Lin. Elucidating solution structures of cyclic peptides using molecular dynamics simulations. Chem Rev, 121(4):2292–2324, 2021. URL: https://www.ncbi.nlm.nih.gov/pubmed/33426882 https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01087 https://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.0c01087, doi:10.1021/acs.chemrev.0c01087.
- 21
A. Llinas, I. Oprisiu, and A. Avdeef. Findings of the second challenge to predict aqueous solubility. J Chem Inf Model, 60(10):4791–4803, 2020. URL: https://www.ncbi.nlm.nih.gov/pubmed/32794744, doi:10.1021/acs.jcim.0c00701.
- 22
D. S. Nielsen, R. J. Lohman, H. N. Hoang, T. A. Hill, A. Jones, A. J. Lucke, and D. P. Fairlie. Flexibility versus rigidity for orally bioavailable cyclic hexapeptides. Chembiochem, 16(16):2289–93, 2015. URL: https://www.ncbi.nlm.nih.gov/pubmed/26336864, doi:10.1002/cbic.201500441.
- 23
E. Marsault and M. L. Peterson. Macrocycles are great cycles: applications, opportunities, and challenges of synthetic macrocycles in drug discovery. J Med Chem, 54(7):1961–2004, 2011. URL: https://www.ncbi.nlm.nih.gov/pubmed/21381769, doi:10.1021/jm1012374.
- 24
Horst Kessler. Conformation and biological activity of cyclic peptides. Angewandte Chemie International Edition in English, 21(7):512–523, 1982. doi:10.1002/anie.198205121.
- 25
A. S. Kamenik, U. Lessel, J. E. Fuchs, T. Fox, and K. R. Liedl. Peptidic macrocycles - conformational sampling and thermodynamic characterization. J Chem Inf Model, 58(5):982–992, 2018. URL: https://www.ncbi.nlm.nih.gov/pubmed/29652495, doi:10.1021/acs.jcim.8b00097.
- 26
Y. Miao, W. Sinko, L. Pierce, D. Bucher, R. C. Walker, and J. A. McCammon. Improved reweighting of accelerated molecular dynamics simulations for free energy calculation. J Chem Theory Comput, 10(7):2677–2689, 2014. URL: https://www.ncbi.nlm.nih.gov/pubmed/25061441 https://escholarship.org/content/qt12s9n8h0/qt12s9n8h0.pdf?t=o1lxlo, doi:10.1021/ct500090q.
- 27
D. Hamelberg, J. Mongan, and J. A. McCammon. Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys, 120(24):11919–29, 2004. URL: https://www.ncbi.nlm.nih.gov/pubmed/15268227 https://aip.scitation.org/doi/pdf/10.1063/1.1755656, doi:10.1063/1.1755656.
- 28
Y. Miao, V. A. Feher, and J. A. McCammon. Gaussian accelerated molecular dynamics: unconstrained enhanced sampling and free energy calculation. J Chem Theory Comput, 11(8):3584–3595, 2015. URL: https://www.ncbi.nlm.nih.gov/pubmed/26300708, doi:10.1021/acs.jctc.5b00436.
- 29
Y. Miao and J. A. McCammon. Gaussian accelerated molecular dynamics: theory, implementation, and applications. Annu Rep Comput Chem, 13:231–278, 2017. URL: https://www.ncbi.nlm.nih.gov/pubmed/29720925, doi:10.1016/bs.arcc.2017.06.005.
- 30
A. E. Wakefield, W. M. Wuest, and V. A. Voelz. Molecular simulation of conformational pre-organization in cyclic rgd peptides. J Chem Inf Model, 55(4):806–13, 2015. URL: https://www.ncbi.nlm.nih.gov/pubmed/25741627, doi:10.1021/ci500768u.
- 31
A. Shkurti, I. D. Styliari, V. Balasubramanian, I. Bethune, C. Pedebos, S. Jha, and C. A. Laughton. Coco-md: a simple and effective method for the enhanced sampling of conformational space. J Chem Theory Comput, 15(4):2587–2596, 2019. URL: https://www.ncbi.nlm.nih.gov/pubmed/30620585, doi:10.1021/acs.jctc.8b00657.
- 32
S. Ono, M. R. Naylor, C. E. Townsend, C. Okumura, O. Okada, and R. S. Lokey. Conformation and permeability: cyclic hexapeptide diastereomers. J Chem Inf Model, 59(6):2952–2963, 2019. URL: https://www.ncbi.nlm.nih.gov/pubmed/31042375, doi:10.1021/acs.jcim.9b00217.
- 33
P. C. Hawkins, A. G. Skillman, G. L. Warren, B. A. Ellingson, and M. T. Stahl. Conformer generation with omega: algorithm and validation using high quality structures from the protein databank and cambridge structural database. J Chem Inf Model, 50(4):572–84, 2010. URL: https://www.ncbi.nlm.nih.gov/pubmed/20235588, doi:10.1021/ci100031x.
- 34
J. C. Baber, D. C. Thompson, J. B. Cross, and C. Humblet. Gard: a generally applicable replacement for rmsd. J Chem Inf Model, 49(8):1889–900, 2009. URL: https://www.ncbi.nlm.nih.gov/pubmed/19618919, doi:10.1021/ci9001074.
- 35
T. Schulz-Gasch, C. Scharfer, W. Guba, and M. Rarey. Tfd: torsion fingerprints as a new measure to compare small molecule conformations. J Chem Inf Model, 52(6):1499–512, 2012. URL: https://www.ncbi.nlm.nih.gov/pubmed/22670896, doi:10.1021/ci2002318.
- 36
D. O. Cicero, G. Barbato, and R. Bazzo. Nmr analysis of molecular flexibility in solution - a new method for the study of complex distributions of rapidly exchanging conformations - application to a 13-residue peptide with an 8-residue loop. Journal of the American Chemical Society, 117(3):1027–1033, 1995. URL: <Go to ISI>://WOS:A1995QD40600019 https://pubs.acs.org/doi/pdf/10.1021/ja00108a019, doi:DOI 10.1021/ja00108a019.
- 37
F. Cipcigan, P. Smith, J. Crain, A. Hogner, L. De Maria, A. Llinas, and E. Ratkova. Membrane permeability in cyclic peptides is modulated by core conformations. J Chem Inf Model, 61(1):263–269, 2021. URL: https://www.ncbi.nlm.nih.gov/pubmed/33350828, doi:10.1021/acs.jcim.0c00803.
- 38
2018.
- 39
J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser, and C. Simmerling. Ff14sb: improving the accuracy of protein side chain and backbone parameters from ff99sb. J Chem Theory Comput, 11(8):3696–713, 2015. URL: https://www.ncbi.nlm.nih.gov/pubmed/26574453, doi:10.1021/acs.jctc.5b00255.
- 40
G. A. Khoury, J. Smadbeck, P. Tamamis, A. C. Vandris, C. A. Kieslich, and C. A. Floudas. Forcefield_ncaa: ab initio charge parameters to aid in the discovery and design of therapeutic proteins and peptides with unnatural amino acids and their application to complement inhibitors of the compstatin family. ACS Synth Biol, 3(12):855–69, 2014. URL: https://www.ncbi.nlm.nih.gov/pubmed/24932669, doi:10.1021/sb400168u.
- 41
William L. Jorgensen, Jayaraman Chandrasekhar, Jeffry D. Madura, Roger W. Impey, and Michael L. Klein. Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2):926–935, 1983. URL: https://aip.scitation.org/doi/pdf/10.1063/1.445869, doi:10.1063/1.445869.
- 42
J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case. Development and testing of a general amber force field. J Comput Chem, 25(9):1157–74, 2004. URL: https://www.ncbi.nlm.nih.gov/pubmed/15116359 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jcc.20035?download=true, doi:10.1002/jcc.20035.
- 43
Etienne Gaines, Krina Maisuria, and Devis Di Tommaso. The role of solvent in the self-assembly of m-aminobenzoic acid: a density functional theory and molecular dynamics study. CrystEngComm, 18(16):2937–2948, 2016. URL: https://pubs.rsc.org/en/content/articlepdf/2016/ce/c6ce00130k, doi:10.1039/c6ce00130k.
- 44
Araz Jakalian, Bruce L. Bush, David B. Jack, and Christopher I. Bayly. Fast, efficient generation of high-quality atomic charges. am1-bcc model: i. method. Journal of Computational Chemistry, 21(2):132–146, 2000. URL: https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/%28SICI%291096-987X%2820000130%2921%3A2%3C132%3A%3AAID-JCC5%3E3.0.CO%3B2-P?download=true, doi:10.1002/(sici)1096-987x(20000130)21:2<132::Aid-jcc5>3.0.Co;2-p.
- 45
Piotr Cieplak, James Caldwell, and Peter Kollman. Molecular mechanical models for organic and biological systems going beyond the atom centered two body additive approximation: aqueous solution free energies of methanol and n-methyl acetamide, nucleic acid base, and amide hydrogen bonding and chloroform/water partition coefficients of the nucleic acid bases. Journal of Computational Chemistry, 22(10):1048–1057, 2001. URL: https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jcc.1065?download=true, doi:10.1002/jcc.1065.
- 46
2013. URL: https://ambermd.org/tutorials/advanced/tutorial22/section1.php.
- 47
Florian Sittel, Abhinav Jain, and Gerhard Stock. Principal component analysis of molecular dynamics: on the use of cartesian vs. internal coordinates. The Journal of Chemical Physics, 141(1):014111, 2014. doi:10.1063/1.4885338.
- 48
X. Daura, I. Antes, W. F. van Gunsteren, W. Thiel, and A. E. Mark. The effect of motional averaging on the calculation of nmr-derived structural properties. Proteins, 36(4):542–55, 1999. URL: https://www.ncbi.nlm.nih.gov/pubmed/10450095 https://core.ac.uk/download/15114817.pdf.
- 49
B. Zagrovic and W. F. van Gunsteren. Comparing atomistic simulation data with the nmr experiment: how much can noes actually tell us? Proteins, 63(1):210–8, 2006. URL: https://www.ncbi.nlm.nih.gov/pubmed/16425239, doi:10.1002/prot.20872.
- 50
G. Balogh, T. Gyongyosi, I. Timari, M. Herczeg, A. Borbas, K. Feher, and K. E. Kover. Comparison of carbohydrate force fields using gaussian accelerated molecular dynamics simulations and development of force field parameters for heparin-analogue pentasaccharides. J Chem Inf Model, 59(11):4855–4867, 2019. URL: https://www.ncbi.nlm.nih.gov/pubmed/31593467 https://pubs.acs.org/doi/pdf/10.1021/acs.jcim.9b00666, doi:10.1021/acs.jcim.9b00666.
- 51
J. Koster and S. Rahmann. Snakemake–a scalable bioinformatics workflow engine. Bioinformatics, 28(19):2520–2, 2012. URL: https://www.ncbi.nlm.nih.gov/pubmed/22908215, doi:10.1093/bioinformatics/bts480.
- 52
Felix Mölder, Kim Philipp Jablonski, Brice Letcher, Michael B. Hall, Christopher H. Tomkins-Tinch, Vanessa Sochat, Jan Forster, Soohyun Lee, Sven O. Twardziok, Alexander Kanitz, Andreas Wilm, Manuel Holtgrewe, Sven Rahmann, Sven Nahnsen, and Johannes Köster. Sustainable data analysis with snakemake. F1000Research, 2021. URL: https://f1000researchdata.s3.amazonaws.com/manuscripts/56004/7f5c67c9-97bc-40c5-b385-a633ffcfcd5b_29032_-_johannes_koster_v2.pdf?doi=10.12688/f1000research.29032.2&numberOfBrowsableCollections=27&numberOfBrowsableInstitutionalCollections=4&numberOfBrowsableGateways=25, doi:10.12688/f1000research.29032.2.
- 53
F. J. Duffy, M. Verniere, M. Devocelle, E. Bernard, D. C. Shields, and A. J. Chubb. Cyclops: generating virtual libraries of cyclized and constrained peptides including nonnatural amino acids. J Chem Inf Model, 51(4):829–36, 2011. URL: https://www.ncbi.nlm.nih.gov/pubmed/21434641, doi:10.1021/ci100431r.
- 54
I. V. Filippov and M. C. Nicklaus. Optical structure recognition software to recover chemical information: osra, an open source solution. J Chem Inf Model, 49(3):740–3, 2009. URL: https://www.ncbi.nlm.nih.gov/pubmed/19434905, doi:10.1021/ci800067r.
- 55
N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, and G. R. Hutchison. Open babel: an open chemical toolbox. J Cheminform, 3:33, 2011. URL: https://www.ncbi.nlm.nih.gov/pubmed/21982300, doi:10.1186/1758-2946-3-33.
- 56
missing journal in RN267
- 57
2021. doi:10.5281/zenodo.591637.
- 58
E. W. Guthohrlein, M. Malesevic, Z. Majer, and N. Sewald. Secondary structure inducing potential of beta-amino acids: torsion angle clustering facilitates comparison and analysis of the conformation during md trajectories. Biopolymers, 88(6):829–39, 2007. URL: https://www.ncbi.nlm.nih.gov/pubmed/17922495 https://onlinelibrary.wiley.com/doi/10.1002/bip.20859, doi:10.1002/bip.20859.
- 59
Y. Wang, W. Xiao, Y. Zhang, L. Meza, H. Tseng, Y. Takada, J. B. Ames, and K. S. Lam. Optimization of rgd-containing cyclic peptides against alphavbeta3 integrin. Mol Cancer Ther, 15(2):232–40, 2016. URL: https://www.ncbi.nlm.nih.gov/pubmed/26719578, doi:10.1158/1535-7163.MCT-15-0544.
- 60
T. Liu, Y. Lin, X. Wen, R. N. Jorissen, and M. K. Gilson. Bindingdb: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res, 35(Database issue):D198–201, 2007. URL: https://www.ncbi.nlm.nih.gov/pubmed/17145705, doi:10.1093/nar/gkl999.
- 61
Y. T. Wang and T. L. Cheng. Computational modeling of cyclic peptide inhibitor-mdm2/mdmx binding through global docking and gaussian accelerated molecular dynamics simulations. J Biomol Struct Dyn, 39(11):4005–4014, 2021. URL: https://www.ncbi.nlm.nih.gov/pubmed/32448094, doi:10.1080/07391102.2020.1773317.
- 62
M. Kansy, F. Senner, and K. Gubernator. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem, 41(7):1007–10, 1998. URL: https://www.ncbi.nlm.nih.gov/pubmed/9544199, doi:10.1021/jm970530e.
- 63
P. Artursson. Epithelial transport of drugs in cell culture. i: a model for studying the passive diffusion of drugs over intestinal absorptive (caco-2) cells. J Pharm Sci, 79(6):476–82, 1990. URL: https://www.ncbi.nlm.nih.gov/pubmed/1975619, doi:10.1002/jps.2600790604.
- 64
V. Poongavanam, Y. Atilaw, S. Ye, L. H. E. Wieske, M. Erdelyi, G. Ermondi, G. Caron, and J. Kihlberg. Predicting the permeability of macrocycles from conformational sampling - limitations of molecular flexibility. J Pharm Sci, 110(1):301–313, 2021. URL: https://www.ncbi.nlm.nih.gov/pubmed/33129836, doi:10.1016/j.xphs.2020.10.052.
- 65
B. Over, P. Matsson, C. Tyrchan, P. Artursson, B. C. Doak, M. A. Foley, C. Hilgendorf, S. E. Johnston, M. D. th Lee, R. J. Lewis, P. McCarren, G. Muncipinto, U. Norinder, M. W. Perry, J. R. Duvall, and J. Kihlberg. Structural and conformational determinants of macrocycle cell permeability. Nat Chem Biol, 12(12):1065–1074, 2016. URL: https://www.ncbi.nlm.nih.gov/pubmed/27748751, doi:10.1038/nchembio.2203.
- 66
L. K. Buckton and S. R. McAlpine. Improving the cell permeability of polar cyclic peptides by replacing residues with alkylated amino acids, asparagines, and d-amino acids. Org Lett, 20(3):506–509, 2018. URL: https://www.ncbi.nlm.nih.gov/pubmed/29364690, doi:10.1021/acs.orglett.7b03363.
- 67
D. V. Zankov, M. Matveieva, A. V. Nikonenko, R. I. Nugmanov, II Baskin, A. Varnek, P. Polishchuk, and T. I. Madzhidov. Qsar modeling based on conformation ensembles using a multi-instance learning approach. J Chem Inf Model, 2021. URL: https://www.ncbi.nlm.nih.gov/pubmed/34554736, doi:10.1021/acs.jcim.1c00692.
- 68
I. Saha, E. K. Dang, D. Svatunek, K. N. Houk, and P. G. Harran. Computational generation of an annotated gigalibrary of synthesizable, composite peptidic macrocycles. Proc Natl Acad Sci U S A, 117(40):24679–24690, 2020. URL: https://www.ncbi.nlm.nih.gov/pubmed/32948694, doi:10.1073/pnas.2007304117.